
Georgia Tech HSMC Proof Test February 15, 2014

1. Suppose that p1 and q1 are the roots of the quadratic x2 − a1x + b1, and p2 and q2 are

the roots of the quadratic x2 − a2x+ b2. Prove that p1 + p2 and q1 + q2 are the roots of

x2 − (a1 + a2)x+ b1 + b2 if and only if p1p2 and q1q2 are the roots of x2 − a1a2x+ b1b2.

Solution: The fact that pi and qi are the roots of x
2−aix+bi implies that ai = pi+qi

and bi = piqi for i = 1, 2.

The condition that p1 + p2 and q1 + q2 are the roots of x2 − (a1 + a2)x + b1 + b2 is

equivalent to a1 + a2 = p1 + p2 + q1 + q2 and b1 + b2 = (p1 + p2)(q1 + q2). Writing all

ai and bi in terms of pi and qi, this is

p1 + p2 + q1 + q2 = p1 + p2 + q1 + q2,

p1q1 + p2q2 = p1q1 + p1q2 + p2q1 + p2q2.

The first condition is always true so we can throw it out. The second can be simplified

to p1q2 + p2q1 = 0.

Similarly the condition that p1p2 and q1q2 are the roots of x2 − a1a2x + b1b2 is

equivalent to a1a2 = p1p2 + q1q2 and b1b2 = p1p2q1q2. Or equivalently

p1p2 + p1q2 + q1p2 + q1q2 = p1p2 + q1q2,

p1p2q1q2 = p1p2q1q2.

Again the second condition can be thrown out, while the first simplifies to p1q2 +

p2q1 = 0. Therefore both statements are equivalent.
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2. Let x1, x2, . . . , xn be n real numbers such that
∑

i xi ≥ 0. What is the minimum number

of nonempty subsets of the n numbers that have non-negative sums?

Solution: First, there will always be at least 2n−1 such subsets: the whole set is

obviously one, and for any proper nonempty subset, either it or its complement has

a nonnegative sum (as they are disjoint and sum up to a nonnegative number). Now

consider x1 = n− 1, x2 = . . . = xn = −1, no nonempty subsets not involving x1 can

have a nonnegative sum, while any subset containing x1 has a nonnegative sum, so

2n−1 can be achieved.
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3. Let ∆ABC be an acute triangle, H,O be the orthocenter and circumcenter of ∆ABC

respectively. Obtain O′ by reflecting O along the side BC, show that O′H = R, where

R is the radius of the circumcircle of ∆ABC. (Do not use any theorems about lengths

involving O and H without proof.)

Solution: Extend BO to meet the circumcircle Γ of ∆ABC at Z, we first show

OO′ = CZ: since BZ is a diameter of Γ, ∠BCZ = π/2 thus CZ = 2OX = OO′ as

OX//CZ and BX = BC/2 by properties of circumcenter. Next we show OO′ = AH :

both CH and ZA are perpendicular to AB by the definition of orthocenter and that

BZ is a diameter, also that AH,CZ are perpendicular to BC, hence AHCZ is a

parallelogram and CZ = AH . Finally both AH and OO′ are perpendicular to BC

and AH = OO′, so AOO′H is a parallelogram, and O′H = OA = R.
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4. Find all ordered triples of prime numbers (p, q, r) such that pq + qp = r.

Solution: First, note that r = pq+qp ≥ 22+22 = 8. Hence, r 6= 2, 3, and so r cannot

be divisible by 2 or 3 (since r is prime). Now, if p, q are both even or both odd, then

pq + qp = r is even, a contradiction. Thus, exactly one of p, q is even, (WLOG, say

p is odd and q is even), and so q = 2. Then we have p2 + 2p = r. Since p is odd,

2p ≡ 2 (mod 3). If p 6= 3, then p is not divisible by 3, and so p2 ≡ 1 (mod 3). But

then r = p2 + 2p ≡ 1 + 2 ≡ 0 (mod 3), a contradiction. Thus, p = 3, which forces

r = 32 + 23 = 17, which is prime. Hence, the only triples are (p, q, r) = (2, 3, 17) or

(3, 2, 17).
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5. Denote by An the number of ways to place 2n chips in an n × n table, at most one

chip in each cell, so that every row and every column has exactly two chips. Show that

there exists some integer N such that every An with n ≥ N is divisible by 2014! =

1× 2× 3× . . .× 2014.

Solution: We say a way to place chips that satisfies the above condition as a “con-

figuration”. First we show that An = n(n−1)
2

(2An−1 + (n− 1)An−2). There are n(n−1)
2

ways to place the two chips in the first row, say we place them to the first and

second column and further assume the other chip in the first column is in row i. If

the other chip C in row i is in the second column, then deleting the first row, row i

together with the first two columns leaves a configuration of size (n−2)×(n−2) and

such process can be easily reversed given the index of i, this account for the term

(n− 1)An−2. Otherwise move chip C to the second column and delete the first row

and first column to get a configuration of size (n − 1) × (n − 1), and such process

can be easily reversed given the choice of chip in the “second” column to be placed

in the “first” column, this accounts the 2An−1 term.

Now A2×2014! = 2014![(2×2014!−1)(2A2×2014!−1+(2×2014!−1)A2×2014!−2)], A2×2014!+1 =

2014![(2 × 2014! + 1)(2A2×2014! + (2 × 2014!)A2×2014!−1)] are divisible by 2014!, and

from the recurrent relation we know An is divisible by 2014! for n ≥ 2× 2014!.
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6. (Tiebreaker) Let D be a function of the positive integers such that

• D(1) = 0,

• D(p) = 1 for every prime number p,

• D(ab) = aD(b) + bD(a) for all integers a and b.

Determine all positive integers n such that D(n) = n, and show that no other positive

integers satisfy this property.

Solution: The function D is sometimes called the arithmetic derivative, since it acts

like a derivative on the set of integers.

First we generalize the product rule above to an arbitrary number of factors. If

n = a1 · · · ak then D(n) = n
a1
D(a1) + . . .+ n

ak
D(ak). We can prove this by induction

on k. In particular, suppose that the rule holds for k − 1 terms and consider n as

the product of the terms, a1 · a2, a3, . . . , ak. Then

D(n) =
n

a1a2
D(a1a2) +

n

a3
D(a3) + . . .+

n

ak
D(ak)

by the induction hypothesis. Substituting in D(a1a2) = a2D(a1) + a1D(a2) we get

the desired formula. Clearly the formula holds for k = 2 so we are done.

Now we apply this formula to the prime factorization of n. Let n = pb11 · · · pbkk where

p1, . . . , pk are distinct primes. By grouping up all the terms for the same prime we

get

D(n) = b1
n

p1
D(p1) + . . .+ bk

n

pk
D(pk) =

k∑

i=1

bi
n

pi
= n

k∑

i=1

bi
pi

since every D(pi) = 1.

Given this formula, suppose we have that D(n) = n. Then

k∑

i=1

bi
pi

= 1.

If k > 1, then it is impossible for this to happen—if so, then b1/p1 = 1−
∑k

i=2 bi/pi =
N

p2···pk
for some integer N . For this to be true, b1 < p1, so p1 ∤ b1. But then p1N =

b1p2 · · · pk: the right-hand side of the equation is not divisible by p1, a contradiction.

So n = pb for a single prime p and b/p = 1 so b = p. So the only solutions to the

“differential equation” D(n) = n are the integers n = pp for a prime p.
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