
Georgia Tech HSMC Proof Test—Solutions March 9, 2013

1. A pair (x, y) of positive integers is called happy if x+ y and xy are both perfect squares.

For example, (5, 20) is happy because 5 + 20 = 25 and 5 · 20 = 100.

Prove that no happy pair exists in which one of its members is 3.

Solution: Suppose there exists an x such that (3, x) is happy. Then 3x is square,

so x = 3y2 for some y; then 3 + 3y2 is also square. However, the squares modulo 4

are 0 and 1, so y2 ≡ 0 or 1 mod 4. This means that 3 + 3y2 ≡ 2 or 3 modulo 4,

contradicting the fact that it is square.

2. Let a1, a2, ..., a2013 be a sequence of 2013 positive integers. Prove that there exists a

nonempty set of consecutive elements of the sequence whose sum is divisible by 2013.

Solution: Define the partial sums sk =
∑k

i=1 ai for 0 ≤ k ≤ 2013. Any sum of

consecutive elements can be expressed in terms of the partial sums as

aj+1 + aj+2 + · · ·+ ai = si − sj

for some i > j. Note that si−sj is divisible by 2013 exactly when si ≡ sj (mod 2013).

There are 2014 partial sums but only 2013 residue classes modulo 2013. By the

pigeonhole principle two distinct partial sums must be in the same residue class.

3. Prove or disprove: there exists a function f with domain and range R such that the

equation f(x) = x has exactly one distinct solution and the equation f(f(x)) = x has

exactly two distinct solutions.

Solution: Let A be the set of a so that f(a) = a and let B be the set of b such that

f(f(b)) = b. Then A ⊆ B. Let B′ = B \A. We claim that if B′ is finite, then it has

even cardinality—if b ∈ B′, then f(b) is also in B′ and is not equal to b. Thus B′ is

partitioned into pairs {b, f(b)}. To finish, A is assumed to have cardinality 1, so B,

if finite, has odd cardinality.

Alternate Solution: Suppose such a function exists. Let a be the unique solution

to f(x) = x (that is, f(a) = a). Then f(f(a)) = f(a) = a, so a is also a solution to

f(f(x)) = x. Let the other distinct solution to this second equation be b 6= a. Then,

f(f(f(b))) = f(b), so f(b) is also a solution to f(f(x)) = x. Since f(f(x)) = x has

only two distinct solutions, we must have either f(b) = b or f(b) = a. If f(b) = b,

then b is a second distinct solution to f(x) = x, a contradiction with our assumption.
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If f(b) = a, then f(f(b)) = a, so b = a, also a contradiction. Therefore, no such

function f exists.

Remark: Note that we did not need that the domain and range of f was R. As

long as f is a function mapping some set X to itself, the proof would still hold.

4. Let 4ABC be a triangle such that ∠B has twice the measure of ∠A. Prove that

BC(BC + AB) = AC2.

Solution: Let X be a point on AC such that BX bisects ∠B. Then 4ABC and

4BXC are similar. Moreover, 4AXB is isosceles, so AX = BX. Now, since

AC = AX + CX = BX + CX, use similarity of 4ABC and 4BXC to get

AC =
AB ·BC

AC
+

BC2

AC
,

equivalent to the desired result.

5. For k ≥ 0, define

f(k) =
∞∑
n=k

(
n

k

)
2−n.

Give a closed-form expression for f(k).

Solution: By the identity
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
(i.e., the recursive formula for com-

puting Pascal’s triangle), we can write

f(k) =
∞∑
n=k

(
n− 1

k − 1

)
2−n +

∞∑
n=k

(
n− 1

k

)
2−n

=
1

2

∞∑
n=k

(
n− 1

k − 1

)
2−n+1 +

1

2

∞∑
n=k

(
n− 1

k

)
2−n+1

=
1

2

∞∑
n=k−1

(
n

k − 1

)
2−n +

1

2

∞∑
n=k−1

(
n

k

)
2−n

=
1

2
f(k − 1) +

1

2
f(k) +

(
k − 1

k

)
2−n−1

=
1

2
f(k − 1) +

1

2
f(k),
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since
(
n
k

)
= 0 when n < k. Thus,

f(k) = f(k − 1),

so f is constant with respect to k. We can then compute

f(0) =
∞∑
n=0

(
n

0

)
2−n =

∞∑
n=0

1

2n
=

1

1− 1/2
= 2,

so f(k) = 2 for all k ≥ 0.

Alternate Solution: Recall that the geometric series

∞∑
n=0

xn =
1

1− x
.

Taking x = 1/2 gives f(0) on the left-hand side and 2 on the right-hand side. Now,

differentiate both sides with respect to x and then multiply each side by x. This

gives
∞∑
n=1

nxn = x(1− x)−2.

Again, taking x = 1/2 gives f(1) on the left-hand side and 2 on the right-hand side.

In general, taking k derivatives of the power series expansion for 1/(1− x) and then

multiplying each side by xk gives the equation

∞∑
n=k

n!

(n− k)!
xn = k!xk(1− x)−k−1,

or
∞∑
n=k

(
n

k

)
xn =

xk

(1− x)k+1
.

Plugging in x = 1/2 then gives f(k) on the left-hand side and 2 on the right-hand

side. Thus, f(k) = 2 for all k.

6. (Tiebreaker) Let X be a set of points in the plane, no three of which are collinear.

(a) If |X| = 5, show that there is a convex quadrilateral whose vertices are in X.

(b) If |X| = 6, show that there are at least three convex quadrilaterals whose vertices

are in X.

(c) Give an example of a set X with six points and exactly three convex quadrilaterals.
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Solution: When |X| = 5, consider the convex hull of the point set. If the convex

hull is a pentagon or quadrilateral, we are done; otherwise the convex hull must be

a triangle. Name the points on the hull A,B,C and the points inside the hull D,E.

Extend the line DE. WLOG, this line intersects AB and AC, and it is easy to see

B,C,D,E form a convex quadrilateral.

When |X| = 6, name the six points A,B,C,D,E, F . Consider S = {A,B,C,D,E}.
From the previous case, there exists at least one convex quadrilateral Q1 within

S. WLOG we may assume the vertices of Q1 are A,B,C,D. Next we consider

T = {B,C,D,E, F}; again by the previous case there is another convex quadrilateral

Q2 within T . Since there must be one common vertex between Q1 and Q2, say B, we

can apply the lemma to {A,C,D,E, F} to get a distinct third convex quadrilateral

Q3. Hence we can always find at least three convex quadrilaterals within six points.

The following figure shows an example of a set X with exactly three convex quadri-

laterals.

Problems contributed by Meredith Casey, Santhosh Karnik, Robert Krone, Chris Pryby, and Chi-

Ho Yuen. Thanks also to Tobias Hurth and Prof. Doron Lubinsky for assistance in editing.
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